An evaluation of using mutual information for selection of acoustic-features representation of phonemes for speech recognition
نویسندگان
چکیده
This paper addresses the problem of finding a subset of the acoustic feature space that best represents the phoneme set used in a speech recognition system. A maximum mutual information approach is presented for selecting acoustic features to be combined together to represent the distinctions among the phonemes. The overall phoneme recognition accuracy is slightly increased for the same length of feature vector for clean speech and at 10 dB compared to FFT-based Mel-frequency cepstrum coefficients (MFCC) by using acoustic features selected based on a maximum mutual information criterion. Using 16 different feature sets, the rank of the feature sets based on mutual information can predict phoneme recognition accuracy with a correlation coefficient of 0.71 compared to a correlation coefficient of 0.28 when using a criterion based on the average pair-wise Kullback-Liebler divergence to rank the feature sets.
منابع مشابه
An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملPhoneme recognition in continuous speech using feature selection based on mutual information
This paper describes an optimal statistical method to recognize phonemes in continuous speech. The novelty of this method is to search the most effective acoustic features in each acoustic Ievel using the criterion of mutual information between acoustic feature vectors and phoneme Iabels assigned to the speech wave. In the proposed method for phoneme recognition using multiple acoustic features...
متن کاملمدلسازی بازشناسی واجی کلمات فارسی
Abstract of spoken word recognition is proposed. This model is particularly concerned with extraction of cues from the signal leading to a specification of a word in terms of bundles of distinctive features, which are assumed to be the building blocks of words. In the model proposed, auditory input is chunked into a set of successive time slices. It is assumed that the derivation of the underly...
متن کاملطراحی الگوریتم بازشناسی واجها با به کارگیری همبسته های آکوستیکی مشخصه های واجی
In the present paper, the phonological feature geometry of the Persian phonemes is analyzed in the form of articulate-free and articulate-bound features based on the articulator model of the nonlinear phonology. Then, the reference phonetic pattern of each feature that consists of one or a set of acoustic correlates, characterized by the quantitative or qualitative values in its phonological re...
متن کاملAllophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کامل